Formation of Poly(propylene)-Based Biocomposite Films and Their Use in the Attachment of Methylene Blue
Autor: | Jesica Anabel Cavallo, Cesar Gerardo Gomez, Miriam Cristina Strumia |
---|---|
Rok vydání: | 2010 |
Předmět: |
Chitosan
Polymers and Plastics Chemistry Físico-Química Ciencia de los Polímeros Electroquímica Organic Chemistry Ciencias Químicas technology industry and agriculture macromolecular substances Condensed Matter Physics Ascorbic acid Decomposition Methylene Blue chemistry.chemical_compound Multilayers Polymerization Polymer chemistry Materials Chemistry Thermal stability Physical and Theoretical Chemistry Biocomposite CIENCIAS NATURALES Y EXACTAS Methylene blue Polypropylene Based Acrylic acid |
Zdroj: | Macromolecular Chemistry and Physics. 211:1793-1802 |
ISSN: | 1022-1352 |
Popis: | Biocomposite PP-g-PAAc-CS films based on PP were generated and utilized as support of methylene blue, a thiazidic dye. Using a photograft polymerization of acrylic acid, the PP film was functionalized with carboxyl groups (PP-g-PAAc), which attached chitosan by electrostatic bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. methylene blue, a thiazidic dye. Using a photograft polymerization of acrylic acid, the PP film was functionalized with carboxyl groups (PP-g-PAAc), which attached chitosan by electrostatic bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. -g-PAAc-CS films based on PP were generated and utilized as support of methylene blue, a thiazidic dye. Using a photograft polymerization of acrylic acid, the PP film was functionalized with carboxyl groups (PP-g-PAAc), which attached chitosan by electrostatic bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. -g-PAAc), which attached chitosan by electrostatic bond. A longer poly(acrylic acid) chain or a higher CS immobilization temperature led to a higher chain interpenetration and crosslinking reaction. Immobilized MB confirmed to possess redox activity from its reaction with ascorbic acid, where the dye decomposition rate (R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. interpenetration, then decreasing with the increase in the crosslinking degree. R0d) increases together with the chain interpenetration, then decreasing with the increase in the crosslinking degree. Fil: Cavallo, Jesica Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina Fil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |