A 515 nW, 0–18 dB Programmable Gain Analog-to-Digital Converter for In-Channel Neural Recording Interfaces
Autor: | Fernando Medeiro, Alberto Rodriguez-Perez, Manuel Delgado-Restituto |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Junta de Andalucía |
Rok vydání: | 2014 |
Předmět: |
Engineering
Biomedical SC circuits Biomedical Engineering Neurophysiology Analog-to-digital converter law.invention Sampling (signal processing) law Low-voltage Low-power Hardware_INTEGRATEDCIRCUITS Animals Electrical and Electronic Engineering Neurons business.industry PGA Motor Cortex Electrical engineering Linearity Biasing Capacitor Effective number of bits Mismatch ADC CMOS Successive approximation Macaca Binary search algorithm business Low voltage Algorithms Analog-Digital Conversion |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname Digital.CSIC. Repositorio Institucional del CSIC |
ISSN: | 1940-9990 1932-4545 |
DOI: | 10.1109/tbcas.2013.2270180 |
Popis: | This paper presents a low-area low-power Switched-Capacitor (SC)-based Programmable-Gain Analog-to-Digital Converter (PG-ADC) suitable for in-channel neural recording applications. The PG-ADC uses a novel implementation of the binary search algorithm that is complemented with adaptive biasing techniques for power saving. It has been fabricated in a standard CMOS 130 nm technology and only occupies 0.0326∼mm}2. The PG-ADC has been optimized to operate under two different sampling modes, 27 kS/s and 90 kS/s. The former is tailored for raw data conversion of neural activity, whereas the latter is used for the on-the-fly feature extraction of neural spikes. Experimental results show that, under a voltage supply of 1.2 V, the PG-ADC obtains an ENOB of 7.56 bit (8-bit output) for both sampling modes, regardless of the gain setting. The amplification gain can be programmed from 0 to 18 dB. The power consumption of the PG-ADC at 90 kS/s is 1.52μW with a FoM of 89.49 fJ/conv, whereas at 27 kS/s it consumes 515 nW and obtains a FoM of 98.31 fJ/conv. © 2007-2012 IEEE. |
Databáze: | OpenAIRE |
Externí odkaz: |