Popis: |
We applied machine learning to improve the accuracy of present predictors of wave setup. Namely, we used an evolutionary-based genetic programming model and a previously published dataset, which includes various beach and wave conditions. Here, we present two new wave setup predictors, a simple predictor, which is a function of wave height, wavelength, and beach slope, and a fitter, but more complex predictor, which is also a function of sediment diameter. The results show that the new predictors outperform existing formulas. Therefore, we conclude that machine learning models are capable of not only improving prediction capability (when compared to classical predictors) but also of providing physically sound descriptions of the processes modelled. |