Fano Kaleidoscopes and their generalizations

Autor: Francesca Merola, Marco Buratti
Přispěvatelé: Buratti, Marco, Merola, Francesca
Rok vydání: 2018
Předmět:
Zdroj: Designs, Codes and Cryptography. 87:769-784
ISSN: 1573-7586
0925-1022
DOI: 10.1007/s10623-018-0538-6
Popis: In this work we introduce Fano Kaleidoscopes, Hesse Kaleidoscopes and their generalizations. These are a particular kind of colored designs for which we will discuss general theory, present some constructions and prove existence results. In particular, using difference methods we show the existence of both a Fano and a Hesse Kaleidoscope on $v$ points when $v$ is a prime or prime power congruent to 1$\pmod{6}$, $v\ne13$. In the Fano case this, together with known results on pairwise balanced designs, allows us to prove the existence of Kaleidoscopes of order $v$ for many other values of $v$; we discuss what the situation is, on the other hand, in the Hesse and general case.
19 pages
Databáze: OpenAIRE