A Schur-Horn theorem for symplectic eigenvalues
Autor: | Tanvi Jain, Rajendra Bhatia |
---|---|
Rok vydání: | 2020 |
Předmět: |
Numerical Analysis
Pure mathematics Algebra and Number Theory Diagonal Spectrum (functional analysis) Positive-definite matrix Schur–Horn theorem Matrix (mathematics) Mathematics - Classical Analysis and ODEs Classical Analysis and ODEs (math.CA) FOS: Mathematics Discrete Mathematics and Combinatorics Geometry and Topology Mathematics::Symplectic Geometry Eigenvalues and eigenvectors Mathematics Symplectic geometry |
Zdroj: | Linear Algebra and its Applications. 599:133-139 |
ISSN: | 0024-3795 |
Popis: | Let x and y be positive n-vectors. We show that there exists a 2 n × 2 n positive definite real matrix whose symplectic spectrum is y, and the symplectic spectrum of whose diagonal is x if and only if x is weakly supermajorised by y. |
Databáze: | OpenAIRE |
Externí odkaz: |