Event-triggered control for discrete-time piecewise affine systems

Autor: Leonardo B. Groff, João M. Gomes da Silva, Giorgio Valmorbida
Přispěvatelé: Departamento de Engenharia Eletrica (UFRGS), Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Dynamical Interconnected Systems in COmplex Environments (DISCO), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE40-0010,HANDY,Systèmes Dynamiques Hybrides et en Réseau(2018)
Rok vydání: 2022
Předmět:
Zdroj: Systems and Control Letters
Systems and Control Letters, 2022, 170, pp.105394. ⟨10.1016/j.sysconle.2022.105394⟩
ISSN: 0167-6911
1872-7956
DOI: 10.1016/j.sysconle.2022.105394
Popis: International audience; This work addresses the event-triggered control (ETC) of discrete-time piecewise affine systems. We propose a method to design a triggering strategy relying on an implicit representation of piecewise affine systems. Thanks to this implicit representation based on ramp functions, we propose a partition-dependent piecewise quadratic functions to define the trigger criterion and use a piecewise quadratic Lyapunov function candidate to derive conditions to certify the global exponential stability of the origin under the ETC strategy. Since the stability conditions can be expressed as linear matrix inequalities constraints, we propose a convex optimization solution to design the triggering function parameters and to compute the Lyapunov function to ensure the closed-loop stability and a reduction on the control updates. The approach is illustrated by numerical examples.
Databáze: OpenAIRE