Combination of biocompatible hydrogel precursors to apatitic calcium phosphate cements (CPCs): Influence of the in situ hydrogel reticulation on the CPC properties

Autor: Stella, Silvia, Caballero, Ramirez, Angulo, Daniel, Lefèvre, François-Xavier, Bouler, Jean-Michel, Ramirez Caballero, Silvia Stella, Ferri‐Angulo, Daniel, Debret, Romain, Granier, Fabien, Marie, Sébastien, Lefèvre, François‐Xavier, Bouler, Jean‐Michel, Despas, Christelle, Sohier, Jérôme, Bujoli, Bruno
Přispěvatelé: Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique UMR 5305 (LBTI), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), COLCOM, Cap Alpha, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes - UFR Sciences et Techniques (UN UFR ST), Université de Nantes (UN), Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Materials science
Bone Regeneration
Compressive Strength
apatitic cement
Composite number
microstructure
Biomedical Engineering
Biocompatible Materials
02 engineering and technology
macromolecular substances
010402 general chemistry
01 natural sciences
Bone and Bones
Injections
Biomaterials
Chitosan
chemistry.chemical_compound
reticulated hydrogel
Apatites
Materials Testing
[CHIM]Chemical Sciences
Humans
Cellulose
Porosity
[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials
ComputingMilieux_MISCELLANEOUS
chemistry.chemical_classification
Cement
technology
industry
and agriculture

Bone Cements
Hydrogels
Polymer
021001 nanoscience & nanotechnology
Microstructure
3. Good health
0104 chemical sciences
Monomer
chemistry
Chemical engineering
Bone Substitutes
composite biomaterial
0210 nano-technology
Zdroj: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Journal of Biomedical Materials Research Part B: Applied Biomaterials, Wiley, In press, ⟨10.1002/jbm.b.34685⟩
Journal of Biomedical Materials Research Part B: Applied Biomaterials, Wiley, 2020, ⟨10.1002/jbm.b.34685⟩
ISSN: 1552-4981
1552-4973
DOI: 10.1002/jbm.b.34685⟩
Popis: International audience; In the field of bone regenerative medicine, injectable calcium phosphate cements (CPCs) are used for decades in clinics, as bone void fillers. Most often preformed polymers (e.g., hyaluronic acid, collagen, chitosan, cellulose ethers…) are introduced in the CPC formulation to make it injectable and improve its cohesion. Once the cement has hardened, the polymer is simply trapped in the CPC structure and no organic subnetwork is present. By contrast, in this work a CPC was combined with organic monomers that reticulated in situ so that a continuous biocompatible 3D polymeric subnetwork was formed in the CPC microstructure, resulting in a higher permeability of the CPC, which might allow to accelerate its in vivo degradation. Two options were investigated depending on whether the polymer was formed before the apatitic inorganic network or concomitantly. In the former case, conditions were found to reach a suitable rheology for easy injection of the composite. In addition, the in situ formed polymer was shown to strongly affect the size, density, and arrangement of the apatite crystals formed during the setting reaction, thereby offering an original route to modulate the microstructure and porosity of apatitic cements.
Databáze: OpenAIRE