Interpretable Machine Learning for Privacy-Preserving Pervasive Systems

Autor: Mirco Musolesi, Benjamin Baron
Přispěvatelé: Benjamin Baron, Mirco Musolesi
Rok vydání: 2017
Předmět:
DOI: 10.48550/arxiv.1710.08464
Popis: Our everyday interactions with pervasive systems generate traces that capture various aspects of human behavior and enable machine learning algorithms to extract latent information about users. In this paper, we propose a machine learning interpretability framework that enables users to understand how these generated traces violate their privacy.
Databáze: OpenAIRE