Edge Detection Based on Hodgkin-Huxley Neuron Model Simulation
Autor: | Olivier Lezoray, Boudjelal Meftah, Abdelkader Benyettou, Hayat Yedjour |
---|---|
Přispěvatelé: | Laboratoire Signal Image et Parole (SIMPA), Université Mohamed Boudiaf de M'sila, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Computer science
Cognitive Neuroscience Models Neurological Experimental and Cognitive Psychology 02 engineering and technology Edge detection 03 medical and health sciences 0302 clinical medicine Artificial Intelligence Orientation 0202 electrical engineering electronic engineering information engineering medicine Humans Computer Simulation Computer vision Vision Ocular Visual Cortex Network model Neurons Spiking neural network Computational neuroscience business.industry Orientation (computer vision) General Medicine Hodgkin–Huxley model Visual cortex medicine.anatomical_structure Receptive field [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] 020201 artificial intelligence & image processing Neural Networks Computer Artificial intelligence business 030217 neurology & neurosurgery |
Zdroj: | Cognitive Processing Cognitive Processing, Springer Verlag, 2017, 18 (3), pp.315-323. ⟨10.1007/s10339-017-0803-z⟩ |
ISSN: | 1612-4782 1612-4790 |
DOI: | 10.1007/s10339-017-0803-z⟩ |
Popis: | International audience; In this paper, we propose a spiking neural network model for edge detection in images. The proposed model is biologically inspired by the mechanisms employed by natural vision systems, more specifically by the biologically fulfilled function of simple cells of the human primary visual cortex that are selective for orientation. Several aspects are studied in this model according to three characteristics: feedforward spiking neural structure; conductance-based model of the Hodgkin-Huxley neuron and Gabor receptive fields structure. A visualized map is generated using the firing rate of neurons representing the orientation map of the visual cortex area. We have simulated the proposed model on different images. Successful computer simulation results are obtained. For comparison, we have chosen five methods for edge detection. We finally evaluate and compare the performances of our model toward contour detection using a public dataset of natural images with associated contour ground truths. Experimental results show the ability and high performance of the proposed network model. |
Databáze: | OpenAIRE |
Externí odkaz: |