Isomorphisms between cylinders over Danielewski surfaces
Autor: | Lucy Moser-Jauslin, Pierre-Marie Poloni |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Mathematics [Basel], University of Basel (Unibas), French National Research Agency (ANR)ANR-lS-IDEX-OOOBEIPHI Graduate School ANR-17-EURE-0002Swiss National Science Foundation Grant 'Curves in the spaces' 200021-169508 |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Surface (mathematics)
Pure mathematics Danielewski surfaces Algebra and Number Theory 010102 general mathematics Locally nilpotent Algebraic geometry Space (mathematics) Principal bundles 01 natural sciences Locally nilpotent derivations Mathematics - Algebraic Geometry Cancellation problem Bundle Product (mathematics) 0103 physical sciences Line (geometry) FOS: Mathematics 010307 mathematical physics Geometry and Topology Affine transformation 0101 mathematics [MATH]Mathematics [math] Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Springer Verlag, 2021, ⟨10.1007/s13366-020-00548-x⟩ |
ISSN: | 0138-4821 |
DOI: | 10.1007/s13366-020-00548-x⟩ |
Popis: | A special Danielewski surface is an affine surface which is the total space of a principal $$({{\mathbb {C}}},+)$$ -bundle over an affine line with a multiple origin. Using a fiber product trick introduced by Danielewski, it is known that cylinders over two such surfaces are always isomorphic provided that both bases have the same number of origins. The goal of this note is to give an explicit method to find isomorphisms between cylinders over special Danielewski surfaces. The method is based on the construction of appropriate locally nilpotent derivations. |
Databáze: | OpenAIRE |
Externí odkaz: |