Isomorphisms between cylinders over Danielewski surfaces

Autor: Lucy Moser-Jauslin, Pierre-Marie Poloni
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Mathematics [Basel], University of Basel (Unibas), French National Research Agency (ANR)ANR-lS-IDEX-OOOBEIPHI Graduate School ANR-17-EURE-0002Swiss National Science Foundation Grant 'Curves in the spaces' 200021-169508
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Springer Verlag, 2021, ⟨10.1007/s13366-020-00548-x⟩
ISSN: 0138-4821
DOI: 10.1007/s13366-020-00548-x⟩
Popis: A special Danielewski surface is an affine surface which is the total space of a principal $$({{\mathbb {C}}},+)$$ -bundle over an affine line with a multiple origin. Using a fiber product trick introduced by Danielewski, it is known that cylinders over two such surfaces are always isomorphic provided that both bases have the same number of origins. The goal of this note is to give an explicit method to find isomorphisms between cylinders over special Danielewski surfaces. The method is based on the construction of appropriate locally nilpotent derivations.
Databáze: OpenAIRE