A novel web-based TinT application and the chronology of the Primate Alu retroposon activity
Autor: | Gennady Churakov, Norbert Grundmann, Andrej Kuritzin, Jürgen Brosius, Wojciech Makalowski, Jürgen Schmitz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Primates
Internet business.industry Evolution Retroposon Computational Biology Alu element Biology Genome DNA sequencing Evolution Molecular Alu Elements Evolutionary biology Phylogenetics QH359-425 Animals Web application Sine Mobile genetic elements business Software Algorithms Phylogeny Ecology Evolution Behavior and Systematics |
Zdroj: | BMC Evolutionary Biology, Vol 10, Iss 1, p 376 (2010) BMC Evolutionary Biology |
ISSN: | 1471-2148 |
Popis: | Background DNA sequences afford access to the evolutionary pathways of life. Particularly mobile elements that constantly co-evolve in genomes encrypt recent and ancient information of their host's history. In mammals there is an extraordinarily abundant activity of mobile elements that occurs in a dynamic succession of active families, subfamilies, types, and subtypes of retroposed elements. The high frequency of retroposons in mammals implies that, by chance, such elements also insert into each other. While inactive elements are no longer able to retropose, active elements retropose by chance into other active and inactive elements. Thousands of such directional, element-in-element insertions are found in present-day genomes. To help analyze these events, we developed a computational algorithm (Transpositions in Transpositions, or TinT) that examines the different frequencies of nested transpositions and reconstructs the chronological order of retroposon activities. Results By examining the different frequencies of such nested transpositions, the TinT application reconstructs the chronological order of retroposon activities. We use such activity patterns as a comparative tool to (1) delineate the historical rise and fall of retroposons and their relations to each other, (2) understand the retroposon-induced complexity of recent genomes, and (3) find selective informative homoplasy-free markers of phylogeny. The efficiency of the new application is demonstrated by applying it to dimeric Alu Short INterspersed Elements (SINE) to derive a complete chronology of such elements in primates. Conclusion The user-friendly, web-based TinT interface presented here affords an easy, automated screening for nested transpositions from genome assemblies or trace data, assembles them in a frequency-matrix, and schematically displays their chronological activity history. |
Databáze: | OpenAIRE |
Externí odkaz: |