On the asymptotic behavior of the sequence and series of running maxima from a real random sequence

Autor: Rita Giuliano Antonini, Andrei Volodin, Thuntida Ngamkham
Rok vydání: 2013
Předmět:
Zdroj: Statistics & Probability Letters. 83:534-542
ISSN: 0167-7152
DOI: 10.1016/j.spl.2012.10.010
Popis: For a sequence { X n , n ≥ 1 } of random variables, set Y n = max 1 ≤ k ≤ n X k − a n , where { a n , n ≥ 1 } is a sequence of constants to be specified. We obtain the limiting behavior of the sequences of positive and negative parts of { Y n , n ≥ 1 } when the tail distribution of { X n , n ≥ 1 } satisfies suitable “exponential-type” conditions. Next, we consider the rate convergence of the positive part to zero (results similar to complete convergence).
Databáze: OpenAIRE