Modular Operator for Null Plane Algebras in Free Fields
Autor: | Vincenzo Morinelli, Yoh Tanimoto, Benedikt Wegener |
---|---|
Rok vydání: | 2022 |
Předmět: |
High Energy Physics - Theory
General Relativity and Quantum Cosmology High Energy Physics - Theory (hep-th) Settore MAT/05 Mathematics - Operator Algebras FOS: Mathematics FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) 81T05 46L60 81P17 Operator Algebras (math.OA) Mathematical Physics |
Zdroj: | Communications in Mathematical Physics. 395:331-363 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-022-04432-8 |
Popis: | We consider the algebras generated by observables in quantum field theory localized in regions in the null plane. For a scalar free field theory, we show that the one-particle structure can be decomposed into a continuous direct integral of lightlike fibres, and the modular operator decomposes accordingly. This implies that a certain form of QNEC is valid in free fields involving the causal completions of half-spaces on the null plane (null cuts). We also compute the relative entropy of null cut algebras with respect to the vacuum and some coherent states. Comment: 35 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |