Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds
Autor: | Christian Pérez, Shadi Ibrahim, Jad Darrous, Amelie Chi Zhou |
---|---|
Přispěvatelé: | Algorithms and Software Architectures for Distributed and HPC Platforms (AVALON), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Software Stack for Massively Geo-Distributed Infrastructures (STACK), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Shenzhen University [Shenzhen], Grid'5000, Discovery, ANR-16-CE25-0014,KerStream,Traitement de données massives: allons au-delà d'Hadoop!(2016), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Software Stack for Massively Geo-Distributed Infrastructures (LS2N - équipe STACK), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), IMT Atlantique (IMT Atlantique), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
data transfer
deduplication Exploit Computer science business.industry Distributed computing 020207 software engineering Provisioning Cloud computing 02 engineering and technology computer.software_genre Scheduling (computing) Virtual machine 020204 information systems virtual machine image 0202 electrical engineering electronic engineering information engineering Bandwidth (computing) Data deduplication [INFO]Computer Science [cs] scheduling [INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC] business computer Data transmission Geo-distribution |
Zdroj: | CCGrid 2018-18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing CCGrid 2018-18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2018, Washington D.C., United States. pp.553-562, ⟨10.1109/CCGRID.2018.00082⟩ CCGrid |
DOI: | 10.1109/CCGRID.2018.00082⟩ |
Popis: | International audience; Recently, most large cloud providers, like Amazon and Microsoft, replicate their Virtual Machine Images (VMIs) on multiple geographically distributed data centers to offer fast service provisioning. Provisioning a service may require to transfer a VMI over the wide-area network (WAN) and therefore is dictated by the distribution of VMIs and the network bandwidth in-between sites. Nevertheless, existing methods to facilitate VMI management (i.e., retrieving VMIs) overlook network heterogeneity in geo-distributed clouds.In this paper, we design, implement and evaluate Nitro, a novel VMI management system that helps to minimize the transfer time of VMIs over a heterogeneous WAN. To achieve this goal, Nitro incorporates two complementary features. First, it makes use of deduplication to reduce the amount of data which will be transferred due to the high similarities within an image and in-between images. Second, Nitro is equipped with a network-aware data transfer strategy to effectively exploit links with high bandwidth when acquiring data and thus expedites the provisioning time. Experimental results show that our network-aware data transfer strategy offers the optimal solution when acquiring VMIs while introducing minimal overhead. Moreover, Nitro outperforms state-of-the-art VMI storage systems (e.g., OpenStack Swift) by up to 77%. |
Databáze: | OpenAIRE |
Externí odkaz: |