Counterexamples to the Complement Problem

Autor: Pierre-Marie Poloni
Jazyk: angličtina
Rok vydání: 2017
Předmět:
DOI: 10.7892/boris.97583
Popis: We provide explicit counterexamples to the so-called Complement Problem in every dimension $n\geq3$, i.e. pairs of non-isomorphic irreducible hypersurfaces $H_1, H_2\subset\mathbb{C}^{n}$ whose complements $\mathbb{C}^{n}\setminus H_1$ and $\mathbb{C}^{n}\setminus H_2$ are isomorphic. Since we can arrange that one of the hypersurfaces is singular whereas the other is smooth, we also have counterexamples in the analytic setting.
to appear in Commentarii Mathematici Helvetici
Databáze: OpenAIRE