Counterexamples to the Complement Problem
Autor: | Pierre-Marie Poloni |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
DOI: | 10.7892/boris.97583 |
Popis: | We provide explicit counterexamples to the so-called Complement Problem in every dimension $n\geq3$, i.e. pairs of non-isomorphic irreducible hypersurfaces $H_1, H_2\subset\mathbb{C}^{n}$ whose complements $\mathbb{C}^{n}\setminus H_1$ and $\mathbb{C}^{n}\setminus H_2$ are isomorphic. Since we can arrange that one of the hypersurfaces is singular whereas the other is smooth, we also have counterexamples in the analytic setting. to appear in Commentarii Mathematici Helvetici |
Databáze: | OpenAIRE |
Externí odkaz: |