A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional
Autor: | Julius Fergy T. Rabago, Hideyuki Azegami |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Hessian matrix
Control and Optimization 0211 other engineering and technologies Boundary (topology) 010103 numerical & computational mathematics 02 engineering and technology Derivative 01 natural sciences Free boundary Bernoulli's principle symbols.namesake Shape optimization Shape derivative Free boundary problem Applied mathematics 0101 mathematics Bernoulli problem Mathematics 021103 operations research Applied Mathematics Function (mathematics) Chain rule Computational Mathematics Domain perturbation symbols |
Zdroj: | Computational Optimization and Applications. 77(1):251-305 |
ISSN: | 0926-6003 |
Popis: | The exterior Bernoulli problem is rephrased into a shape optimization problem using a new type of objective function called the Dirichlet-data-gap cost function which measures the L^2-distance between the Dirichlet data of two state functions. The first-order shape derivative of the cost function is explicitly determined via the chain rule approach. Using the same technique, the second-order shape derivative of the cost function at the solution of the free boundary problem is also computed. The gradient and Hessian informations are then used to formulate an efficient second-order gradient-based descent algorithm to numerically solve the minimization problem. The feasibility of the proposed method is illustrated through various numerical examples. ファイル公開:2021/09/01 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |