Head detection based on skeleton graph method for counting people in crowded environments

Autor: Pierre Drap, Rabah Iguernaissi, Djamal Merad, Bernard Fertil, Kheir-Eddine Aziz
Přispěvatelé: Laboratoire des Sciences de l'Information et des Systèmes (LSIS), Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU), Domingues Vinhas, William, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Journal of Electronic Imaging
Journal of Electronic Imaging, SPIE and IS&T, 2016, 25 (1), pp.013012-013012
Journal of Electronic Imaging, 2016, 25 (1), pp.013012-013012
ISSN: 1017-9909
1560-229X
Popis: We describe a method for detecting heads in order to count people in crowded environments using a single camera. The main difference between this method and traditional ones consists of adapting skeleton graph analysis techniques for distinguishing individuals in crowded environments. First, a graph skeleton is calculated for each selected blob in a scene after having performed motion estimation. Then, the structural property of each blob is explored to detect possible heads in order to estimate the number of people. Each detected head in the skeleton silhouette is identified as being in an independent or partial occlusion state and is updated during a tracking process. Finally, the results of our experiments are presented to demonstrate the robustness of our method.
Databáze: OpenAIRE