The Fine-Structure Constant as a Ruler for the Band-Edge Light Absorption Strength of Bulk and Quantum-Confined Semiconductors
Autor: | Prins, P. Tim, Alimoradi Jazi, Maryam, Killilea, Niall A., Evers, Wiel H., Geiregat, Pieter, Heiss, Wolfgang, Houtepen, Arjan J., Delerue, Christophe, Hens, Zeger, Vanmaekelbergh, Daniel, Condensed Matter and Interfaces, Sub Inorganic Chemistry and Catalysis, Sub Condensed Matter and Interfaces |
---|---|
Přispěvatelé: | Debye Institute for Nanomaterials Science, Utrecht University [Utrecht], Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Delft University of Technology (TU Delft), Universiteit Gent = Ghent University (UGENT), Physique - IEMN (PHYSIQUE - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), support by The Netherlands Organization for Scientific Research (NWO, Grant 14614 'Q-Lumicon') and the European Research Council (ERC Advanced Grant 692691 'First step'). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602) and Ghent University (BOF-GOA 01G01019). D.V.M, W.H., C.D., and Z.H. acknowledge support from the European Commission via the Marie-Skłodowska Curie action Phonsi (H2020-MSCA-ITN-642656)., European Project: FIRST STEP, European Project: 642656,H2020,H2020-MSCA-ITN-2014,Phonsi(2015), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Universiteit Gent = Ghent University [Belgium] (UGENT), Condensed Matter and Interfaces, Sub Inorganic Chemistry and Catalysis, Sub Condensed Matter and Interfaces |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Letter
Materials science Exciton Superlattice Bioengineering 02 engineering and technology 01 natural sciences Condensed Matter::Materials Science 0103 physical sciences General Materials Science Quantum coupling fine-structure constant [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] 010306 general physics Absorption (electromagnetic radiation) dielectric screening optical transitions Condensed matter physics business.industry Condensed Matter::Other Mechanical Engineering Fine-structure constant General Chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Chemistry quantum coupling Semiconductor Quantum dot Absorptance light absorption PBSE 0210 nano-technology business |
Zdroj: | Nano Letters Nano Letters, 2021, 21 (22), pp.9426-9432. ⟨10.1021/acs.nanolett.1c02682⟩ Nano Letters, American Chemical Society, 2021, ⟨10.1021/acs.nanolett.1c02682⟩ Nano Letters: a journal dedicated to nanoscience and nanotechnology, 21(22) NANO LETTERS Nano Letters, 21(22), 9426. American Chemical Society |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c02682⟩ |
Popis: | International audience; Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of lowdimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension. |
Databáze: | OpenAIRE |
Externí odkaz: |