Popis: |
Bleeding in outdoor environments is often accompanied by bacterial infection. Due to poor outdoor conditions, it is essential to use the same materials to achieve one-stop treatment of fast hemostasis and simultaneously sterilizing bacteria, especially multidrug-resistant bacteria. Photodynamic therapy (PDT) can kill superbacteria, and local PDT through a nanofiber platform can effectively reduce damage to normal tissue. However, current photosensitizers whether in the interior or on the surface of fibers would leak into the wound and inhibit collagen regeneration. Herein, we use a battery-powered handheld electrospinning device that can work outdoors. It directly spins fibers onto the wound, which facilitates fast hemostasis due to its excellent adhesion to the wound. Eluting holes in the hydrophobic fibers by wound tissue fluid are also proposed to accelerate the escape of reactive oxygen species (ROS) from the interior of the fibers to the wound. After photosensitizers were coated on upconverting nanoparticles (UCNPs), they formed clusters whose size (∼55 nm) was much larger than the uniform elution hole (∼4 nm), which prevented photosensitizers from leaking out into the wound tissue. This cluster structure can also tailor the photosensitizers to be triggered by near infrared (NIR) light, whose deeper penetration depth in tissue can facilitate treating deep infections. Because of the combination of the in situ fiber deposition method with the designed elution mode, ROS is effectively poured out onto the fiber surface and is quickly delivered to the wound. Thus, after rapid hemostasis ( |