Micro-mesoporous modified activated carbon from corn husks for removal of hexavalent chromium ions

Autor: Sahar M. Mousa, Nabila S. Ammar, Hanan S. Ibrahim, Nady A. Fathy
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied Water Science, Vol 11, Iss 9, Pp 1-12 (2021)
ISSN: 2190-5495
2190-5487
Popis: Modified activated carbon sorbents (ACP-Zn and ACP-Zn-Fe) had been prepared from the activation of corn husks precursor to increase the chemical activity of the resulting adsorbents by increasing the number of active functional groups and generation of micro-mesoporous structures. Fourier transform infrared (FTIR) assessed the acidic surface properties of the prepared activated carbons that is due to the presence acidic functional groups such as –OH and –COOH which improves the removal efficiency of the produced sorbents. Textural characteristics revealed the generation of micro-mesoporous structures in ACP–Zn and ACP-Zn-Fe. Thus the combination of H3PO4 with Zn or Zn–Fe could enhance the mesoporosity with a considerable decrease in the adsorption of nitrogen. However, the formation of mesopores might be attributed to the template-like effects of the obtained Zn- of Zn-Fe compounds inside the carbon structure. These structures were employed as sorbents for removal of hexavalent chromium Cr(VI) ions from its aqueous solutions, and the removal efficiency reached ~ 86% for ACP-Zn-Fe and ~ 82% for ACP-Zn. The kinetic modeling studies revealed that the sorption process follows the pseudo-second-order model which indicates that the mechanism of process is chemisorptions. Freundlich, Langmuir and Dubinin–Radushkevich (D–R) models were used to express the experimental data. The isotherm modeling studies revealed that the sorption process was fit with both Freundlich and Langmuir models with maximum capacity 24.8 and 30.3 mg/g for ACP-Zn and ACP-Zn-Fe, respectively.
Databáze: OpenAIRE