Less Polar Compounds and Targeted Antioxidant Potential (In Vitro and In Vivo) of Codium adhaerens C. Agardh 1822
Autor: | Stela Jokić, Rozelindra Čož-Rakovac, Ivana Flanjak, Sanja Babić, Lara Čižmek, Igor Jerković, Sanja Radman, Drago Šubarić, Ana-Marija Cikoš |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pheophytin
Antioxidant medicine.medical_treatment Pharmaceutical Science Pharmacy radical scavenging and antioxidant power chemistry.chemical_compound Pharmacy and materia medica In vivo Drug Discovery medicine Fucoxanthin dimethyl sulfide heptadecane pheophytin a and its derivatives pheophorbide a and its derivatives zebrafish model chemistry.chemical_classification In vitro toxicology Fatty acid RS1-441 Chemistry chemistry Phytochemical Biochemistry Pheophorbide A Medicine Molecular Medicine Biotechnology |
Zdroj: | Pharmaceuticals, Vol 14, Iss 944, p 944 (2021) Pharmaceuticals Volume 14 Issue 9 |
ISSN: | 1424-8247 |
DOI: | 10.3390/ph14090944 |
Popis: | Codium adhaerens from the Adriatic Sea (Croatia) was comprehensively investigated regarding less polar compounds for the first time. Although there are several phytochemical studies on C. adhaerens from other regions, this is the first report on volatile organic compounds (VOCs) from fresh (FrCa) and air-dried (DrCa) samples. The novelty is also related to its targeted antioxidant potential in vitro and in vivo. The main aims were to: (a) identify and compare VOCs of FrCa and DrCa obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) (b) determine fatty acid (FA) composition of freeze-dried sample (FdCa) (c) determine the composition of less polar fractions of FdCa by high-performance liquid chromatography–high-resolution mass spectrometry with electrospray ionisation (UHPLC-ESI-HRMS) and (d) comprehensively evaluate the antioxidant activity of the fractions by four in vitro assays and in vivo zebrafish model (including embryotoxicity). Significant changes of VOCs were found after air drying. ω6 FAs were present in higher content than ω3 FAs indicating C. adhaerens as a good source of dietary polyunsaturated FAs. The results obtained in vivo correlate well with in vitro methods and both fractions exerted similar antioxidative responses which is in agreement with the high abundance of present biomolecules with known antioxidant properties (e.g., fucoxanthin, pheophytin a, and pheophorbide a). These results suggest that C. adhaerens might be a potent source of natural antioxidants that could be further used in the research of oxidative stress-related diseases. |
Databáze: | OpenAIRE |
Externí odkaz: |