A multilayer perceptron model for the correlation between satellite data and soil vulnerability in the Ferlo, Senegal

Autor: Samira El Yacoubi, Waldir de Carvalho Junior, Mireille Fargette, Abdoulaye Faye, Thérèse Libourel, Maud Loireau
Přispěvatelé: UMR 228 Espace-Dev, Espace pour le développement, Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), Centre de Suivi Ecologique [Dakar] (CSE), Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Ministério da Agricultura, Pecuária e Abastecimento [Brasil] (MAPA), Governo do Brasil-Governo do Brasil
Jazyk: angličtina
Rok vydání: 2018
Předmět:
RESEAU NEURONAL
Computer Networks and Communications
SYSTEME D'INFORMATION GEOGRAPHIQUE
media_common.quotation_subject
IMAGE SATELLITE
Vulnerability
0102 computer and information sciences
02 engineering and technology
VULNERABILITE
01 natural sciences
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
Satellite data
0202 electrical engineering
electronic engineering
information engineering

GESTION DE L'ENVIRONNEMENT
media_common
2. Zero hunger
DESERTIFICATION
SURFACE DU SOL
Soil vulnerability
15. Life on land
desertification
neural networks
Arid
MODELISATION
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Desertification
010201 computation theory & mathematics
ERODIBILITE DU SOL
Multilayer perceptron
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Land degradation
Environmental science
020201 artificial intelligence & image processing
CORRELATION
Water resource management
Software
satellite images
Zdroj: International Journal of Parallel, Emergent and Distributed Systems
International Journal of Parallel, Emergent and Distributed Systems, Taylor & Francis, 2018, pp.1-10. ⟨10.1080/17445760.2018.1434175⟩
ISSN: 1744-5760
1744-5779
Popis: International audience; Soil erosion processes which contribute to desertification and land degradation, constitute major environmental and social issues for the coming decades. This is particularly true in arid areas where rural populations mostly depend on soil ability to support crop production. Assessment of soil erosion across large and quite diverse areas is very difficult but crucial for planning and management of the natural resources. The purpose of this paper is to investigate a prediction model for soil vulnerability to erosion based on the use of the information contained in satellite images. Based on neural networks models, the used approach in this paper aims at checking a correlation between the digital content of satellite images and soil vulnerability factors: erosivity (R), the soil erodibility (K), and the slope length and steepness (LS); vulnerability (V) as described in the RUSLE model. Significant results have been obtained for R and K factors. This promising pilot study was conducted in South Ferlo, Senegal, a region with Sahelian environmental characteristics.
Databáze: OpenAIRE