High-order methods for large-eddy simulation in complex geometries

Autor: Eric Serre, Christine Baur, Michael Schäfer, Matthieu Minguez, Richard Pasquetti, Michael Kornhaas, Eric Séverac, Patrick Bontoux
Přispěvatelé: Department of Computer Science, Technische Universität Darmstadt (TU Darmstadt), Modélisation et Simulation Numérique (en mécanique des fluides) (M2P2), Centre National de la Recherche Scientifique (CNRS)-Université de Provence - Aix-Marseille 1-Université Paul Cézanne - Aix-Marseille 3-Université de la Méditerranée - Aix-Marseille 2, Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Christophe Brun & al., Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Numerical simulation of turbulent flows and noise generation
Christophe Brun & al. Numerical simulation of turbulent flows and noise generation, Springer Berlin Heidelberg, pp.309-334, 2009, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 978-3-540-89955-6. ⟨10.1007/978-3-540-89956-3_13⟩
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783540899556
Popis: International audience; Developing high-order methods for large-eddy simulation (LES) is of interest to avoid mixing between subgrid scale modeling contributions and approximation errors of the numerical method. Two different approaches are investigated. The first one focuses on the so-called Spectral Vanishing Viscosity LES (SVV-LES) approach, which allows to extend the well known capabilities of spectral methods from laminar to turbulent flows, while the second one rather investigates the possibility of extending a second order finite volume code to higher order approximations. For the SVV-LES approach, a volume penalization like technique is used to address complex geometries.
Databáze: OpenAIRE