Using the dual-criteria methods to supplement visual inspection: An analysis of nonsimulated data

Autor: Sarah C. Huxley, Marc J. Lanovaz, Marie-Michèle Dufour
Přispěvatelé: Université de Montréal. Faculté des arts et des sciences. École de psychoéducation
Jazyk: angličtina
Rok vydání: 2017
Předmět:
DOI: 10.1002/jaba.394
Popis: The purpose of our study was to examine the probability of observing false positives in nonsimulated data using the dual-criteria methods. We extracted data from published studies to produce a series of 16,927 datasets and then assessed the proportion of false positives for various phase lengths. Our results indicate that collecting at least three data points in the first phase (Phase A) and at least five data points in the second phase (Phase B) is generally sufficient to produce acceptable levels of false positives.
Databáze: OpenAIRE