Data curation in the Internet of Things: A decision model approach

Autor: Ángel Jesús Varela-Vaca, Álvaro Valencia-Parra, Francisco José de Haro-Olmo, José Antonio Álvarez-Bermejo
Přispěvatelé: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla. TIC258: Data-centric Computing Research Hub, Ministerio de Ciencia Y Tecnología (MCYT). España
Jazyk: angličtina
Rok vydání: 2021
Předmět:
ISSN: 2018-0942
Popis: Current Internet of Things (IoT) scenarios have to deal with many challenges especially when a large amount of heterogeneous data sources are integrated, that is, data curation. In this respect, the use of poor-quality data (i.e., data with problems) can produce terrible consequence from incorrect decision-making to damaging the performance in the operations. Therefore, using data with an acceptable level of usability has become essential to achieve success. In this article, we propose an IoT-big data pipeline architecture that enables data acqui sition and data curation in any IoT context. We have customized the pipeline by including the DMN4DQ approach to enable us the measuring and evaluat ing data quality in the data produced by IoT sensors. Further, we have chosen a real dataset from sensors in an agricultural IoT context and we have defined a decision model to enable us the automatic measuring and assessing of the data quality with regard to the usability of the data in the context Ministerio de Ciencia y Tecnología RTI2018-094283-B-C33
Databáze: OpenAIRE