Peptides from American alligator plasma are antimicrobial against multi-drug resistant bacterial pathogens including Acinetobacter baumannii

Autor: Monique L. van Hoek, Evelyn J. Hrifko, Ezra M. Chung, Stephanie M. Barksdale
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: BMC Microbiology
ISSN: 1471-2180
Popis: Background Our group has developed a new process for isolating and identifying novel cationic antimicrobial peptides from small amounts of biological samples. Previously, we identified several active antimicrobial peptides from 100 μl of plasma from Alligator mississippiensis. These peptides were found to have in vitro antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In this work, we further characterize three of the novel peptides discovered using this process: Apo5, Apo6, and A1P. Results We examined the activity of these peptides against multi-drug resistant strains and clinical isolates of common human pathogens. We investigated their structural characteristics using circular dichroism and tested for membrane disruption and DNA binding. These peptides were found to have strong in vitro activity against multi-drug resistant and clinically isolated strains of S. aureus, Escherichia coli, P. aeruginosa, and Acinetobacter baumannii. Apo5 and Apo6, peptides derived from alligator apolipoprotein C-1, depolarized the bacterial membrane. A1P, a peptide from the serpin proteinase inhibitor, did not permeabilize membranes. Performing circular dichroism analysis, Apo5 and Apo6 were found to be predominantly helical in SDS and TFE buffer, while A1P has significantly different structures in phosphate buffer, SDS, and TFE. None of these peptides were found to be hemolytic to sheep red blood cells or significantly cytotoxic up to 100 μg/ml after 24 h exposure. Conclusions Overall, we suggest that Apo5 and Apo6 have a different mode of action than A1P, and that all three peptides make promising candidates for the treatment of drug-resistant bacteria, such as A. baumannii.
Databáze: OpenAIRE