RAFT/MADIX emulsion copolymerization of vinyl acetate and N-vinylcaprolactam: towards waterborne physically crosslinked thermoresponsive particles

Autor: Abdel Khoukh, Maud Save, Elise Lejeune, Laura Etchenausia
Přispěvatelé: Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Université de Pau et des Pays de l'Adour (UPPA)
Rok vydání: 2017
Předmět:
Zdroj: Polymer Chemistry
Polymer Chemistry, Royal Society of Chemistry-RSC, 2017, 8 (14), pp.2244-2256. ⟨10.1039/c7py00221a⟩
ISSN: 1759-9962
1759-9954
DOI: 10.1039/c7py00221a
Popis: Well-defined poly(N-vinylcaprolactam-co-vinyl acetate) thermoresponsive particles physically crosslinked by means of hydrophobic interactions were synthesized by polymerization-induced self-assembly. It was highlighted that a xanthate-terminated poly(ethylene glycol) (PEG-X) efficiently acted as both a stabilizer and a macromolecular chain transfer agent for the RAFT/MADIX batch emulsion copolymerization of N-vinylcaprolactam (VCL) and vinyl acetate (VAc), enabling the direct synthesis in aqueous dispersed media of PEG-b-P(VAc-co-VCL) block copolymers. It was emphasized that a fraction of 47 mol% of hydrophobic VAc in the second block of the copolymer was suitable for maintaining the integrity of the self-assembled PEG-b-P(VAc-co-VCL) block copolymer particles at low temperature while exhibiting a temperature-induced phase transition. The well-defined physically crosslinked particles interestingly behaved as thermoresponsive colloids analogous to chemically crosslinked microgels. The PEG-b-P(VAc0.47-co-VCL0.53) particles were able to undergo a reversible swollen-to-collapse transition with increasing temperature in the absence of hysteresis. The PEG-b-P(VAc0.17-co-VCL0.83) block copolymer with a lower fraction of VAc in the copolymer (17 mol%) behaved oppositely as very small objects were present in the aqueous phase at low temperature (T < 20 °C) and self-assembled into large aggregates by increasing the temperature. Finally, the statistical copolymers based on VAc and VCL were successfully hydrolyzed into promising thermoresponsive biocompatible statistical copolymers based on vinyl alcohol and N-vinylcaprolactam co-monomer units.
Databáze: OpenAIRE