Dynamical degrees of affine-triangular automorphisms of affine spaces

Autor: Jérémy Blanc, Immanuel van Santen
Rok vydání: 2021
Předmět:
Zdroj: Ergodic Theory and Dynamical Systems. 42:3551-3592
ISSN: 1469-4417
0143-3857
DOI: 10.1017/etds.2021.90
Popis: We study the possible dynamical degrees of automorphisms of the affine space$\mathbb {A}^n$. In dimension$n=3$, we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space$\mathbb {A}^n$for somen, and we give the best possiblenfor quadratic integers, which is either$3$or$4$.
Databáze: OpenAIRE