Muscle temperature is least altered during total sleep deprivation in rats

Autor: Binney Sharma, Trina Sengupta, Lal Chandra Vishwakarma, Hruda Nanda Mallick, Nasreen Akhtar
Rok vydání: 2021
Předmět:
Zdroj: Journal of Thermal Biology. 98:102910
ISSN: 0306-4565
DOI: 10.1016/j.jtherbio.2021.102910
Popis: It has often been said that the brain is mostly benefitted from sleep. To understand the importance of sleep, extensive studies on other organs are too required. One such unexplored area is the understanding of muscle physiology during the sleep-wake cycle. Changes in muscle tone with different sleep phases are evident from the rapid eye movement sleep muscle atonia. There is variation in brain and body temperature during sleep stages, the brain temperature being higher during rapid eye movement sleep than slow-wave sleep. However, the change in muscle temperature with different sleep stages is not known. In this study, we have implanted pre-calibrated K-type thermocouples in the hypothalamus and the dorsal nuchal muscle, and a peritoneal transmitter to monitor the hypothalamic, muscle, and body temperature respectively in rats during 24 h sleep-wake cycle. The changes in muscle, body, and hypothalamic temperature during total sleep deprivation were also monitored. During normal sleep-wake stages, the temperature in the decreasing order was that of the hypothalamus, body, and muscle. Total sleep deprivation by gentle handling caused a significant increase in hypothalamic and body temperature, while there was least change in the muscle temperature. The circadian rhythm of the hypothalamic and body temperature in the sleep-deprived rats was disrupted, while the same was preserved in the muscle temperature. The results of our study show that muscle atonia during rapid eye movement sleep is a physiologically regulated thermally quiescent muscle state offering a conducive environment for muscle rest and repair.
Databáze: OpenAIRE