Electrochemical and Electronic Properties of Transparent Coating from Highly Solution Processable Graphene Using Block Copolymer Supramolecular Assembly: Application toward Metal Ion Sensing and Resistive Switching Memory
Autor: | Soumili Daripa, Biplab K. Kuila, Pallavi Kumari, Koomkoom Khawas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Materials science
Graphene General Chemical Engineering Oxide Biasing 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Article 0104 chemical sciences Indium tin oxide Supramolecular assembly law.invention lcsh:Chemistry chemistry.chemical_compound chemistry Chemical engineering lcsh:QD1-999 law Thin film 0210 nano-technology Hybrid material Ohmic contact |
Zdroj: | ACS Omega ACS Omega, Vol 3, Iss 6, Pp 7106-7116 (2018) |
ISSN: | 2470-1343 |
Popis: | Here, we have discussed the preparation of a highly solution processable graphene from a novel supramolecular assembly consisting of block copolymer polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and pyrenebutyric acid (PBA)-modified reduced graphene oxide (RGO). The PBA molecules anchored on the graphene surface form supramolecules with PS-b-P4VP through H-bonding between the carboxylic acid group of 1-pyrenebutyric acid and the pyridine ring of P4VP. The formation of a supramolecular assembly results in a highly stable solution of reduced graphene oxide in common organic solvents, such as 1,4-dioxane and chloroform. Highly transparent and mechanically stable thin films can be deposited from these supramolecular assemblies on a relatively smooth surface of different substrates such as silicon wafer, glass, indium tin oxide, and flexible polymer substrates like poly(ethylene terephthalate). The graphene surface modifier (PBA) can be selectively removed from the thin film of the hybrid material by simple dissolution, resulting in a porous structure. Hybrid thin films of around 50 nm thickness exhibit interesting electrochemical properties with an areal capacitance value of 17.73 μF/cm2 at a current density of 2.66 μA/cm2 and good electrochemical stability. The pendent P4VP chains present in the composite thin film were further exploited for electrochemical detection of metal ions. The electrical measurement of the thin film sandwich structure of the composite shows a bipolar resistive switching memory with hysteresis-like current-voltage characteristics and electrical bistability. The OFF state shows ohmic conduction at a lower voltage and trap-free space-charge-limited current (SCLC) conduction at high voltage, whereas the ON state conduction is controlled by ohmic at low bias voltage, trap-free SCLC at moderate voltage, and tarp-assisted SCLC at high voltage. |
Databáze: | OpenAIRE |
Externí odkaz: |