Autonomous Calibration of Single Spin Qubit Operations

Autor: Boris Naydenov, Tommaso Calarco, Simone Montangero, Thomas Unden, Fedor Jelezko, Jonathan K. Zoller, Ressa S. Said, Florian Frank
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: npj Quantum Information, Vol 3, Iss 1, Pp 1-5 (2017)
npj Quantum Information
Popis: Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict and to anticipate the quantum dynamics [1,2], as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a Hadamard gate within the experimental error of 2%. These results manifest a full potential for versatile quantum nanotechnologies.
9 pages, 5 figures
Databáze: OpenAIRE