Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

Autor: Lars Eide, Magnar Bjørås, Kirsten Krohg-Sørensen, Göran K. Hansson, Lasse Folkersen, Daniel F. J. Ketelhuth, Rolf K. Berge, Ingunn Østlie, Bodil Bjørndal, Ulf Hedin, Jeroen J. T. Otten, Tuva B. Dahl, Erik A.L. Biessen, Rajikala Suganthan, Gunn A. Hildrestrand, Per Ole Iversen, Geir Slupphaug, Thor Ueland, Katja Scheffler, Sverre Holm, Asbjørn Svardal, Tonje Skarpengland, Anna Kuśnierczyk, Pål Aukrust, Ole Kristoffer Olstad, Anna M. Lundberg, Christine G. Neurauter, Ståle Nygård, Mona Skjelland, Ida Gregersen, Luisa Luna, Bente Halvorsen, Filip M. Segers
Přispěvatelé: Promovendi CD, Pathologie, RS: CARIM - R3.06 - The vulnerable plaque: makers and markers
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Scientific Reports
Skarpengland, T, Holm, S, Scheffler, K, Gregersen, I, Dahl, T B, Suganthan, R, Segers, F M, Østlie, I, Otten, J J T, Luna, L, Ketelhuth, D F J, Lundberg, A M, Neurauter, C G, Hildrestrand, G, Skjelland, M, Bjørndal, B, Svardal, A M, Iversen, P O, Hedin, U, Nygård, S, Olstad, O K, Krohg-Sorensen, K, Slupphaug, G, Eide, L, Kusnierczyk, A, Folkersen, L, Ueland, T, Berge, R K, Hansson, G K, Biessen, E A L, Halvorsen, B, Bjørås, M & Aukrust, P 2016, ' Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice ', Scientific Reports, vol. 6, 28337 . https://doi.org/10.1038/srep28337
Scientific Reports, 6:28337. Nature Publishing Group
6:28337
ISSN: 2045-2322
DOI: 10.1038/srep28337
Popis: Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.
Databáze: OpenAIRE