Min-max solutions for super sinh-Gordon equations on compact surfaces
Autor: | Andrea Malchiodi, Ruijun Wu, Aleks Jevnikar |
---|---|
Přispěvatelé: | Jevnikar, A., Malchiodi, A., Wu, R. |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Multiplicity results
Pure mathematics Type (model theory) 01 natural sciences Mathematics - Analysis of PDEs Settore MAT/05 - Analisi Matematica FOS: Mathematics 0101 mathematics Variational analysis Existence result Multiplicity result Nehari manifold Complement (set theory) Mathematics Existence results Min-max methods Super sinh-Gordon equations Applied Mathematics 010102 general mathematics Hyperbolic function Multiplicity (mathematics) Symmetry (physics) 010101 applied mathematics 58J05 35A01 58E05 81Q60 Min-max method Analysis Analysis of PDEs (math.AP) |
Popis: | In the present paper we initiate the variational analysis of a super sinh-Gordon system on compact surfaces, yielding the first example of non-trivial solution of min-max type. The proof is based on a linking argument jointly with a suitably defined Nehari manifold and a careful analysis of Palais-Smale sequences. We complement this study with a multiplicity result exploiting the symmetry of the problem. 22 pages |
Databáze: | OpenAIRE |
Externí odkaz: |