Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate
Autor: | Yulia A. Amelkovich, Irina S. Berdyugina, Visakh P. Maniyan, Olga B. Nazarenko, A. G. Bannov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Thermogravimetric analysis
Materials science Polymers and Plastics Bicarbonate sodium bicarbonate flammability biopolymers Carbon nanotube борная кислота Article law.invention Boric acid lcsh:QD241-441 chemistry.chemical_compound epoxy composites lcsh:Organic chemistry углеродные нанотрубки law Thermal stability thermal degradation Composite material Flammability Sodium bicarbonate термическая деструкция carbon nanotubes General Chemistry Epoxy эпоксидные композиты chemistry visual_art visual_art.visual_art_medium горючесть boric acid |
Zdroj: | Polymers, Vol 13, Iss 638, p 638 (2021) Polymers Volume 13 Issue 4 |
ISSN: | 2073-4360 |
Popis: | Epoxy composites filled with 0.5 wt% of multi-walled carbon nanotubes (MWCNTs), 10 and 15 wt% of boric acid and sodium bicarbonate separately, as well as composites filled with a combination of MWCNTs-boric acid and MWCNTs-sodium bicarbonate were prepared. The thermal behavior of the prepared samples was investigated under heating in oxidative environment using thermogravimetric analysis. The hardness was measured using the Shore D hardness test. To evaluate the flammability of the samples, the ignition temperature and time-to-ignition were determined. It was concluded that sodium bicarbonate in the studied concentrations (10 and 15 wt%) is not appropriate for use as a filler capable of improving the thermooxidative stability and reducing the flammability of epoxy polymers. The improvement in the thermal properties can be achieved by using the combination of boric acid and multi-walled carbon nanotubes as fillers. The thermooxidative destruction of the samples filled with boric acid passes more slowly and more evenly via the formation of B2O3 as a result of its decomposition. |
Databáze: | OpenAIRE |
Externí odkaz: |