Spitzer's identity for discrete random walks

Autor: Augustus J. E. M. Janssen, J.S.H. van Leeuwaarden
Přispěvatelé: Stochastic Operations Research, Center for Quantum Materials and Technology Eindhoven
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Operations Research Letters, 46(2), 168-172. Elsevier
ISSN: 0167-6377
DOI: 10.1016/j.orl.2017.12.003
Popis: Spitzer’s identity describes the position of a reflected random walk over time in terms of a bivariate transform. Among its many applications in probability theory are congestion levels in queues and random walkers in physics. We present a derivation of Spitzer’s identity for random walks with bounded jumps to the left, only using basic properties of analytic functions and contour integration. The main novelty is a reversed approach that recognizes a factored polynomial expression as the outcome of Cauchy’s formula.
Databáze: OpenAIRE