Quantum-mechanical research on nonlinear resonance and the problem of quantum chaos

Autor: Levan Chotorlishvili, K. Nickoladze, A. Ugulava
Rok vydání: 2003
Předmět:
Zdroj: Physical review. E, Statistical, nonlinear, and soft matter physics. 70(2 Pt 2)
ISSN: 1539-3755
Popis: The quantum-mechanical investigation of nonlinear resonance in terms of approximation to moderate nonlinearity is reduced to the investigation of eigenfunctions and eigenvalues of the Mathieu-Schrodinger equation. The eigenstates of the Mathieu-Schrodinger equation are nondegenerate in a certain area of pumping amplitude values in the neighborhood of the classical separatrix. Outside this area, the system finds itself in a degenerate state for both small and large pumping amplitude values. Degenerate energy terms arise as a result of merging and branching of pairs of nondegenerate energy terms. Equations are obtained for finding the merging points of energy terms. These equations are solved by numerical methods. The main objective of this paper is to establish a quantum analog of the classical stochastic layer formed in the separatrix area. With this end in view, we consider a nonstationary quantum-mechanical problem of perturbation of the state of the Mathieu-Schrodinger equation. It is shown that in passing through the branching point the system may pass from the pure state to the mixed one. At multiple passages through branching points there develops the irreversible process of "creeping" of the system to quantum states. In that case, the observed population of a certain number of levels can be considered, in our opinion, to be a quantum analog of the stochastic layer. The number of populated levels is defined by a perturbation amplitude.
Databáze: OpenAIRE