Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis

Autor: Thierry Mallevaey, Josette Fontaine, Christelle Faveeuw, Maria Leite-de-Moraes, Christophe Paget, Monique Capron, Laetitia Breuilh, François Trottein, Catherine Vendeville, Alexandre Castro-Keller
Přispěvatelé: Cytokines, hématopoïèse et réponse immune (CHRI), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5) - Institut National de la Santé et de la Recherche Médicale (INSERM) - Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Infection and Immunity
Infection and Immunity, American Society for Microbiology, 2007, 75, pp.2171-2180
ISSN: 0019-9567
1098-5522
Popis: CD1d-restricted natural killer T (NKT) cells represent a heterogeneous population of innate memory immune cells expressing both NK and T-cell markers distributed into two major subsets, i.e., invariant NKT (iNKT) cells, which express exclusively an invariant T-cell receptor (TCR) α chain (Vα14Jα18 in mice), and non-iNKT cells, which express more diverse TCRs. NKT cells quickly produce Th1- and/or Th2-type cytokines following stimulation with glycolipid antigen (Ag) and, through this property, play potent immunoregulatory roles in autoimmune diseases, cancer, and infection. No study has addressed the role of NKT cells in metazoan parasite infections so far. We show that during murine schistosomiasis, the apparent frequency of both iNKT cells and non-iNKT cells decreased in the spleen as early as 3 weeks postinfection (p.i.) and that both populations expressed a greater amount of the activation marker CD69 at 6 weeks p.i., suggesting an activated phenotype. Two different NKT-cell-deficient mouse models, namely, TCR Jα18−/−(exclusively deficient in iNKT cells) and CD1d−/−(deficient in both iNKT and non-iNKT cells) mice, were used to explore the implication of these subsets in infection. We show that whereas both iNKT and non-iNKT cells do not have a major impact on the immune response during the early phase (1 and 4 weeks) of infection, they exert important, although opposite, effects on the immune response during the acute phase of the disease (7 and 12 weeks), after schistosome egg production. Indeed, iNKT cells contribute to Th1 cell differentiation whereas non-iNKT cells might be mostly implicated in Th2 cell differentiation in response to parasite Ag. Our findings suggest, for the first time, that helminths activate both iNKT and non-iNKT cells in vivo, enabling them to differentially influence the Th1/Th2 balance of the immune response.
Databáze: OpenAIRE