Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 Low Dose CT Grand Challenge

Autor: David R. Holmes, Lifeng Yu, Gregory J. Michalak, Baiyu Chen, Phillip Edwards, Alice E. Huang, Joel G. Fletcher, Adam C. Bartley, Rickey E. Carter, Kristina M. Nunez, Shuai Leng, Farhana Khan, Tammy A. Drees, Kyle McMillan, Cynthia H. McCollough
Rok vydání: 2017
Předmět:
Zdroj: Medical Physics. 44:e339-e352
ISSN: 0094-2405
DOI: 10.1002/mp.12345
Popis: Purpose Using common datasets, to estimate and compare the diagnostic performance of image-based denoising techniques or iterative reconstruction algorithms for the task of detecting hepatic metastases. Methods Datasets from contrast-enhanced CT scans of the liver were provided to participants in an NIH-, AAPM- and Mayo Clinic-sponsored Low Dose CT Grand Challenge. Training data included full-dose and quarter-dose scans of the ACR CT accreditation phantom and 10 patient examinations; both images and projections were provided in the training data. Projection data were supplied in a vendor-neutral standardized format (DICOM-CT-PD). Twenty quarter-dose patient datasets were provided to each participant for testing the performance of their technique. Images were provided to sites intending to perform denoising in the image domain. Fully preprocessed projection data and statistical noise maps were provided to sites intending to perform iterative reconstruction. Upon return of the denoised or iteratively reconstructed quarter-dose images, randomized, blinded evaluation of the cases was performed using a Latin Square study design by 11 senior radiology residents or fellows, who marked the locations of identified hepatic metastases. Markings were scored against reference locations of clinically or pathologically demonstrated metastases to determine a per-lesion normalized score and a per-case normalized score (a faculty abdominal radiologist established the reference location using clinical and pathological information). Scores increased for correct detections; scores decreased for missed or incorrect detections. The winner for the competition was the entry that produced the highest total score (mean of the per-lesion and per-case normalized score). Reader confidence was used to compute a Jackknife alternative free-response receiver operating characteristic (JAFROC) figure of merit, which was used for breaking ties. Results 103 participants from 90 sites and 26 countries registered to participate. Training data were shared with 77 sites that completed the data sharing agreements. Subsequently, 41 sites downloaded the 20 test cases, which included only the 25% dose data (CTDIvol = 3.0 ± 1.8 mGy, SSDE = 3.5 ± 1.3 mGy). 22 sites submitted results for evaluation. One site provided binary images and one site provided images with severe artifacts; cases from these sites were excluded from review and the participants removed from the challenge. The mean (range) per-lesion and per-case normalized scores were −24.2% (−75.8%, 3%) and 47% (10%, 70%), respectively. Compared to reader results for commercially reconstructed quarter-dose images with no noise reduction, 11 of the 20 sites showed a numeric improvement in the mean JAFROC figure of merit. Notably two sites performed comparably to the reader results for full-dose commercial images. The study was not designed for these comparisons, so wide confidence intervals surrounded these figures of merit and the results should be used only to motivate future testing. Conclusion Infrastructure and methodology were developed to rapidly estimate observer performance for liver metastasis detection in low-dose CT examinations of the liver after either image-based denoising or iterative reconstruction. The results demonstrated large differences in detection and classification performance between noise reduction methods, although the majority of methods provided some improvement in performance relative to the commercial quarter-dose images with no noise reduction applied.
Databáze: OpenAIRE