Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalyst

Autor: Farhan S.M. Ali, Ryan Lacdao Arevalo, Matthias Vandichel, Florian Speck, Eeva-Leena Rautama, Hua Jiang, Olli Sorsa, Kimmo Mustonen, Serhiy Cherevko, Tanja Kallio
Přispěvatelé: Electrochemical Energy Conversion, University of Limerick, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Department of Chemistry and Materials Science, OtaNano, University of Vienna, Department of Applied Physics, Aalto-yliopisto, Aalto University
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Applied catalysis / B 315, 121541-(2022). doi:10.1016/j.apcatb.2022.121541
Ali, F S M, Arevalo, R L, Vandichel, M, Speck, F, Rautama, E, Jiang, H, Sorsa, O, Mustonen, K, Cherevko, S & Kallio, T 2022, ' Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalyst ', Applied Catalysis B: Environmental, vol. 315, 121541 . https://doi.org/10.1016/j.apcatb.2022.121541
DOI: 10.1016/j.apcatb.2022.121541
Popis: For anion exchange membrane (AEM) electrolysis, challenges include finding an optimal catalyst for hydrogen evolution reaction (HER), as the noble metals are scarce while non-noble metals are inferior. Here, the noble metal amount is reduced in a straightforward solution synthesis which produces Pt-Ru surface nanoparticles and unique intratube nanowires decorated on single walled carbon nanotubes (SWNT). In half-cell tests, 5 wt PtRu-% Pt-Ru SWNT demonstrates stable 10 mA cm −2 HER current at 46 mV overpotential and outperforms commercial electrocatalysts. When integrated in an AEM electrolyser, a high current density of 500 mA cm −2 at a low voltage of 1.72 V is achieved with 34 µg cm −2 metal loading. First-principles calculations reveal that both the Pt-Ru alloy nanoparticle and intratube nanowires promote near optimal H* binding energy, thereby releasing the H 2 faster. Thus, our approach yields an active low metal loading alkaline HER catalyst without sacrificing the performance in an AEM electrolyser.
Databáze: OpenAIRE