Genus-two trisections are standard

Autor: Jeffrey Meier, Alexander Zupan
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Geom. Topol. 21, no. 3 (2017), 1583-1630
Popis: We show that the only closed 4-manifolds admitting genus two trisections are $S^2 \times S^2$ and connected sums of $S^1 \times S^3$, $\mathbb{CP}^2$, and $\overline{\mathbb{CP}}^2$ with two summands. Moreover, each of these manifolds admits a unique genus two trisection up to diffeomorphism. The proof relies heavily on the combinatorics of genus two Heegaard diagrams of $S^3$. As a corollary, we classify two-component links contained in a genus two Heegaard surface for $S^3$ with a surface-sloped cosmetic Dehn surgery.
Comment: 41 pages, 29 figures
Databáze: OpenAIRE