Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries
Autor: | Markus Gellesch, Sabine Wurmehl, Silke Hampel, E. Thauer, Maik Scholz, Rüdiger Klingeler, Rasha Ghunaim, Lucas Schlestein, Christoph Neef, Ewa Mijowska, Christian Nowka, Aakanksha Kapoor, Lukas Deeg, Karolina Wenelska, Florian Wilhelmi, Rouven Zeus, Marcel Haft, Philip Schneider, Alexander Ottmann, Ashna Bajpai, Lucas Möller |
---|---|
Přispěvatelé: | Publica |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
lithium-ion batteries
Pharmaceutical Science Nanoparticle Applied Physics (physics.app-ph) 02 engineering and technology Review 01 natural sciences Ferric Compounds Analytical Chemistry Nanomaterials law.invention Nanocomposites anode material law Drug Discovery Condensed Matter - Materials Science Oxides Physics - Applied Physics Cobalt 021001 nanoscience & nanotechnology Chemistry (miscellaneous) Molecular Medicine 0210 nano-technology filled carbon nanotubes Materials science FOS: Physical sciences chemistry.chemical_element Nanotechnology Carbon nanotube Lithium 010402 general chemistry Energy storage lcsh:QD241-441 Electric Power Supplies Microscopy Electron Transmission lcsh:Organic chemistry Physical and Theoretical Chemistry Electrodes Ions Nanocomposite Nanotubes Carbon Organic Chemistry Electric Conductivity Materials Science (cond-mat.mtrl-sci) Electrochemical Techniques hybrid nanomaterials Electrical contacts 0104 chemical sciences Anode chemistry Manganese Compounds Tin Microscopy Electron Scanning Carbon |
Zdroj: | Molecules, Vol 25, Iss 5, p 1064 (2020) Molecules |
ISSN: | 1420-3049 |
Popis: | Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB. Comment: Invited |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |