Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus

Autor: Cristina M. Rondinone, Ulf Smith, Ling-Mei Wang, Jacalyn H. Pierce, Christian Wesslau, Peter Lönnroth
Rok vydání: 1997
Předmět:
Zdroj: Proceedings of the National Academy of Sciences. 94:4171-4175
ISSN: 1091-6490
0027-8424
DOI: 10.1073/pnas.94.8.4171
Popis: The large docking protein IRS-1 is a major substrate for the insulin receptor and other tyrosine kinases. It plays a key role in eliciting many of insulin’s actions, including binding and activation of phosphatidylinositol (PI) 3-kinase and the subsequent increase in glucose transport. Gene disruption of IRS-1 in mice is associated with an impaired insulin-stimulated glucose disposal in vivo and glucose transport in vitro , but the survival of the animals and residual insulin sensitivity is dependent on the presence of the alternative docking protein IRS-2. We examined the expression and function of IRS-1 and IRS-2 in adipocytes from healthy and diabetic individuals. Cells from subjects with non-insulin-dependent diabetes mellitus (NIDDM), but not with insulin-dependent diabetes mellitus, had an impaired insulin effect and a marked reduction (70 ± 6%) in the expression of IRS-1 protein, whereas IRS-2 was unchanged. In normal cells, IRS-1 was the main docking protein for the binding and activation of insulin-stimulated PI 3-kinase; IRS-2 was also functional but required a higher insulin concentration for a similar binding and activation of PI 3-kinase. In contrast in NIDDM cells with a low IRS-1 content, IRS-2 became the main docking protein. These findings may provide important reasons for the insulin resistance in NIDDM.
Databáze: OpenAIRE