Homogenization of Bingham flow in thin porous media
Autor: | María Anguiano, Renata Bunoiu |
---|---|
Přispěvatelé: | Universidad de Sevilla, Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] 01 natural sciences Homogenization (chemistry) Physics::Fluid Dynamics Mathematics - Analysis of PDEs FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics Physics Viscoplasticity Applied Mathematics 010102 general mathematics Mathematical analysis General Engineering porous medium Relative dimension Computer Science Applications 76A05 76A20 76M50 35B27 010101 applied mathematics Bingham fluid Nonlinear system thin domain Bingham plastic Porous medium Analysis of PDEs (math.AP) |
Zdroj: | Networks and Heterogeneous Media Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2020, ⟨10.3934/nhm.2020004⟩ |
ISSN: | 1556-1801 |
DOI: | 10.3934/nhm.2020004⟩ |
Popis: | By using dimension reduction and homogenization techniques, we study the steady flow of an incompresible viscoplastic Bingham fluid in a thin porous medium. A main feature of our study is the dependence of the yield stress of the Bingham fluid on the small parameters describing the geometry of the thin porous medium under consideration. Three different problems are obtained in the limit when the small parameter $\varepsilon$ tends to zero, following the ratio between the height $\varepsilon$ of the porous medium and the relative dimension $a_\varepsilon$ of its periodically distributed pores. We conclude with the interpretation of these limit problems, which all preserve the nonlinear character of the flow. Comment: 21 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |