Homogenization of Bingham flow in thin porous media

Autor: María Anguiano, Renata Bunoiu
Přispěvatelé: Universidad de Sevilla, Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Networks and Heterogeneous Media
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2020, ⟨10.3934/nhm.2020004⟩
ISSN: 1556-1801
DOI: 10.3934/nhm.2020004⟩
Popis: By using dimension reduction and homogenization techniques, we study the steady flow of an incompresible viscoplastic Bingham fluid in a thin porous medium. A main feature of our study is the dependence of the yield stress of the Bingham fluid on the small parameters describing the geometry of the thin porous medium under consideration. Three different problems are obtained in the limit when the small parameter $\varepsilon$ tends to zero, following the ratio between the height $\varepsilon$ of the porous medium and the relative dimension $a_\varepsilon$ of its periodically distributed pores. We conclude with the interpretation of these limit problems, which all preserve the nonlinear character of the flow.
Comment: 21 pages, 1 figure
Databáze: OpenAIRE