A braid-like presentation of the integral Steinberg group of type C_2
Autor: | Christian Kassel |
---|---|
Přispěvatelé: | Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Steinberg group
Algebra and Number Theory 19C09 20F05 20F36 (Primary) 11E57 20G30 22E40 (Secondary) 010102 general mathematics Braid group K-Theory and Homology (math.KT) Group Theory (math.GR) Type (model theory) 01 natural sciences [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] Combinatorics Mathematics::Group Theory Modular group Mathematics::Quantum Algebra 0103 physical sciences Mathematics - K-Theory and Homology FOS: Mathematics Braid 010307 mathematical physics 0101 mathematics Mathematics - Group Theory Quotient Symplectic geometry Integer (computer science) Mathematics |
Zdroj: | Journal of Algebra Journal of Algebra, Elsevier, 2020, ⟨10.1016/j.jalgebra.2020.09.015⟩ |
ISSN: | 0021-8693 1090-266X |
Popis: | We show that the Steinberg group $\text{St}(C_2,{\mathbb Z})$ associated with the Lie type $C_2$ and with integer coefficients can be realized as a quotient of the braid group $B_6$ by one relation. As an application we give a new braid-like presentation of the symplectic modular group $\text{Sp}_4({\mathbb Z})$. 14 pages |
Databáze: | OpenAIRE |
Externí odkaz: |