Chromosome territories and the global regulation of the genome
Autor: | Nitasha Sehgal, Andrew J. Fritz, Artem Pliss, Ronald Berezney, Jinhui Xu |
---|---|
Rok vydání: | 2018 |
Předmět: |
Transcription factories
Cell Nucleus Cancer Research Genome Chromosome Computational biology Biology Nuclear matrix Chromatin Chromosomes Article 03 medical and health sciences 0302 clinical medicine Gene Expression Regulation 030220 oncology & carcinogenesis Genetics Nucleosome Animals Humans Enhancer Gene |
Zdroj: | Genes, chromosomescancer. 58(7) |
ISSN: | 1098-2264 |
Popis: | Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies. |
Databáze: | OpenAIRE |
Externí odkaz: |