Accurate, grid-robust and versatile combined-field discretization for the electromagnetic scattering analysis of perfectly conducting targets
Autor: | Alexander Heldring, Eduard Ubeda, Ivan Sekulic, Juan M. Rius |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. ANTENNALAB - Grup d'Antenes i Sistemes Radio |
Rok vydání: | 2020 |
Předmět: |
Physics and Astronomy (miscellaneous)
Discretization Computer science Method of moments Radar d'obertura sintètica Basis function 010103 numerical & computational mathematics Method of moments (statistics) Electromagnetisme Topology 01 natural sciences Electromagnetism Polygon mesh 0101 mathematics Galerkin method Numerical Analysis Radar Applied Mathematics Enginyeria de la telecomunicació [Àrees temàtiques de la UPC] Radar cross section Integral equation Combined-field integral equation Computer Science Applications 010101 applied mathematics Computational electromagnetics Computational Mathematics Mesh generation Modeling and Simulation Basis functions Interior resonance problem |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 0021-9991 |
DOI: | 10.1016/j.jcp.2020.109236 |
Popis: | Recent implementations of the Electric-Field Integral Equation (EFIE) for the electromagnetic scattering analysis of perfectly conducting targets rely on the electric current expansion with the monopolar-RWG basis functions, discontinuous across mesh edges, and the field testing over volumetric subdomains attached to the surface boundary triangulation. As compared to the standard RWG-based EFIE-approaches, normally continuous across edges, these schemes exhibit enhanced versatility, allowing the analysis of geometrically non-conformal meshes, and improved accuracy, especially for subwavelength sharp-edged conductors. In this paper, we present a monopolar-RWG discretization by the Method of Moments (MoM) of the Combined-Field Integral Equation (CFIE) resulting from the addition of a volumetrically tested discretization of the EFIE and the Galerkin tested MFIE-implementation. We show for sharp-edged conductors the degree of improved accuracy in the computed RCS and the convergence properties in the iterative search of the solution. More importantly, as we show in the paper, these implementations become in practice advantageous because of their robustness to flaws in the grid generation or their agility in handling complex meshes arising from the interconnection of independently meshed domains. The hybrid RWG/monopolar-RWG discretization of the CFIE defines the RWG discretization over geometrically conformal and smoothly varying mesh regions and inserts the monopolar-RWG expansion strictly at sharp edges, for improved accuracy purposes, or over boundary lines between partitioning mesh domains, for the sake of enhanced versatility. These hybrid schemes offer similar accuracy as their fully monopolar-RWG counterparts but with fewer unknowns and allow naturally non-conformal mesh transitions without inserting additional inter-domain continuity conditions or new artificial currents. This work was supported by FEDER and the Spanish Comisión Interministerial de Ciencia y Tecnologı́a (CICYT) under projects TEC2016-78028-C3-1- P, TEC2017-84817-C2-2- R, and the Unidad de Excelencia Maria de Maeztu MDM-2016-0600, funded by the Agencia Estatal de Investigación, Spain. |
Databáze: | OpenAIRE |
Externí odkaz: |