A coalgebraic view on reachability
Autor: | Shin-ya Katsumata, Stefan Milius, Thorsten Wißmann, Jérémy Dubut |
---|---|
Přispěvatelé: | Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), National Institute of Informatics (NII), Japanese French Laboratory for Informatics (JFLI), National Institute of Informatics (NII)-The University of Tokyo (UTokyo)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2020 |
Předmět: |
Functor
Computer science General Mathematics Coalgebra Mathematics::Rings and Algebras [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] Mathematics - Category Theory State (functional analysis) Base (topology) Kleisli category Algebra Range (mathematics) Mathematics::K-Theory and Homology Reachability Mathematics::Quantum Algebra Computer Science::Logic in Computer Science Mathematics::Category Theory FOS: Mathematics Graph (abstract data type) Category Theory (math.CT) ComputingMilieux_MISCELLANEOUS [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] |
Zdroj: | Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae, 2019, 60 (4), pp.605-638. ⟨10.14712/1213-7243.2019.026⟩ |
ISSN: | 1213-7243 0010-2628 |
Popis: | Coalgebras for an endofunctor provide a category-theoretic framework for modeling a wide range of state-based systems of various types. We provide an iterative construction of the reachable part of a given pointed coalgebra that is inspired by and resembles the standard breadth-first search procedure to compute the reachable part of a graph. We also study coalgebras in Kleisli categories: for a functor extending a functor on the base category, we show that the reachable part of a given pointed coalgebra can be computed in that base category. |
Databáze: | OpenAIRE |
Externí odkaz: |