Monomial multiplicities in explicit form
Autor: | Guillermo Alesandroni |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Monomial Polynomial ring 0102 computer and information sciences Commutative Algebra (math.AC) 01 natural sciences FOS: Mathematics IDEALES Computer Science::General Literature 0101 mathematics ComputingMilieux_MISCELLANEOUS Mathematics ALGEBRA Algebra and Number Theory Mathematics::Commutative Algebra MONOMIOS Computer Science::Information Retrieval Applied Mathematics 010102 general mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Multiplicity (mathematics) Monomial ideal Mathematics - Commutative Algebra TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010201 computation theory & mathematics ComputingMethodologies_DOCUMENTANDTEXTPROCESSING |
Zdroj: | Journal of Algebra and Its Applications. 2019 Repositorio Institucional (UCA) Pontificia Universidad Católica Argentina instacron:UCA |
Popis: | Denote by [Formula: see text] a polynomial ring over a field, and let [Formula: see text] be a monomial ideal of [Formula: see text]. If [Formula: see text], we prove that the multiplicity of [Formula: see text] is given by [Formula: see text] On the other hand, if [Formula: see text] is a complete intersection, and [Formula: see text] is an almost complete intersection, we show that [Formula: see text] We also introduce a new class of ideals that extends the family of monomial complete intersections and that of codimension 1 ideals, and give an explicit formula for their multiplicity. |
Databáze: | OpenAIRE |
Externí odkaz: |