Remote Sensing Technologies for Detecting, Visualizing and Quantifying Gas Leaks

Autor: Xavier Watremez, André Marblé, Thierry Baron, Xavier Marcarian, Dominique Dubucq, Ludovic Donnat, Laurent Cazes, Pierre-Yves Foucher, Ronan Danno, Damien Elie, Martin Chamberland, Jean-Philippe Gagnon, Le Brun Gay, Jeremy Dobler, Ruben Østrem, Andres Russu, Matthew Schmidt, Olivier Zaouak
Přispěvatelé: Total E&P, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Société ADCIS (ADCIS), Société ADCIS, Telops, Bertin Technologies (Bertin Technologies), Bertin Technologies, Harris Geospatial Solutions, Gas Optics, Sensia, Fluke, MODIS
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility 2018
SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility 2018, Apr 2018, Abu Dhabi, United Arab Emirates. ⟨10.2118/190496-MS⟩
Scopus-Elsevier
Popis: Remote sensing technologies can be applied for a wide range of gas leak flowrates and in three main cases: (1) major leaks in crisis management; (2) medium size leaks in safety monitoring; (3) small leaks in environmental monitoring.A gas test campaign, conducted by Total, the ONERA – the French Aerospace Lab – and ADCIS in September 2015 using three hyperspectral infrared cameras from Telops, confirmed our capacity to visualize in 3D and quantify in real time plumes of methane in the range of 1 g/s to 50g/s. The R&D project on gas remote quantification continued with a second gas test campaign in 2017.The second gas test campaign was organized on Total's Lacq Pilot Platform in France and involved several gas spectral imaging systems: (1) mobile hyperspectral cameras in the Long-Wavelength InfraRed (LWIR) band (7.7-12μm); (2) a multispectral camera in the LWIR band (7-9μm); (3) a multigas lidar (LIght Detection And Ranging) system coupled with a wind lidar system; (4) five other international teams (US, Spain, Norway and France) were also invited to assess the capacity of their remote-sensing systems to quantify methane and carbon dioxide releases.The two-week test demonstrated that methane leak emissions ranging from 0.7 g/s to 140 g/s could be visualized and quantified in real time using a mobile Telops Hyper-Cam. This campaign also served to validate the performance of several remote sensing technologies.Total's Lacq Pilot Platform is a test area for qualifying cost-effective systems designed to complement the gas detection system of a plant and provide valuable information should a gas leak incident occur. New methodologies for the early detection of anomalies using remote observation systems including drones, robots and artificial intelligence data processing systems are currently being investigated there.
Databáze: OpenAIRE