Upregulation of glutamate metabolism by BYHWD in cultured astrocytes following oxygen-glucose deprivation/reoxygenation in part depends on the activation of p38 MAPK

Autor: Ruixian Guo, Ruishan Lin, Wei Liu, Peng Yu, Lequan Zhou, Xiaoying Li, Li Guan, Wenting Ding, Jianchao Guo
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Popis: Recent studies have demonstrated that Buyang Huanwu Decoction (BYHWD) decreased glutamate levels subsequent to cerebral ischemia. Glutamate transporter-1 (GLT-1) and glutamine synthetase (GS), which are located in astrocytes, mainly contribute to glutamate transportation, thus reducing glutamate concentration. BYHWD has previously been demonstrated to upregulate GLT-1 and GS following ischemia in vivo. However, whether BYHWD can directly influence astrocytic GLT-1/GS levels remains unknown. In the present study, the effect of BYHWD containing serum (BYHWD-CS) on GLT-1/GS levels in astrocytes following oxygen-glucose deprivation/reoxygenation (OGD/R) was investigated. The results revealed that BYHWD-CS enhanced the expression levels of GLT-1 and GS in cultured astrocytes, which reduced glutamate concentration in the culture medium. Meanwhile, increased p38 mitogen-activated protein kinase (p38 MAPK) was phosphorylated (activation form) by BYHWD-CS in cultured astrocytes, and the specific p38 inhibitor SB203580 blocked the increase of GLT-1/GS accompanied by decreased cell viability. Furthermore, SB203580 suppressed the effect of BYHWD-CS on the level of glial fibrillary acidic protein (an astrocytic marker), thus confirming that astrocytes are directly involved in the protective role of BYHWD after OGD/R. These findings suggest that BYHWD upregulates GLT-1 and GS via p38 MAPK activation, and protects cultured astrocytes from death caused by OGD/R (typical in vitro model), which complemented the role of astrocytes in the protective effect of BYHWD.
Databáze: OpenAIRE